
Mobile	Front-end	
Development	

Last	update	:	10/03/2016	

1 INTRODUCTION	
The	mobile	world	contains	plenty	of	platforms,	
technologies	 and	 technical	 solutions.	 As	 the	
mobile	devices	haven’t	been	as	broad	as	now,	
the	presence	of	a	company	on	several	platforms	
has	 become	 a	 very	 strong	 requirement.	 This	
paper	 presents	 a	 summary	 of	 the	 existing	
solutions	now,	and	why	you	should	choose	one	
instead	 of	 another,	 regarding	 your	 needs	 and	
what	workforce	your	company	owns.	

This	 white	 paper	 was	 written	 by	 Nalys	 SPRL	
employees:	 Dimitri	 Dujardin,	 a	 senior	 Java	
Software	Engineer	and	Maxime	Denis,	a	 junior	
Java	 Software	 Engineer	 who	 also	 worked	 on	
responsive	 design	 solutions	 in	 the	 medical	
scope	and	on	Android	Development.	

Some	 criteria	 are	 ranked	 regarding	 the	
following	table:	

++	 Very	good	
+	 Good	
+-	 Not	good	and	not	bad	
-	 Bad	
--	 Very	bad	

	

2 MOBILE	DEVELOPMENT	

APPROACHES	
Three	main	approaches	are	considered	in	this	
paper.	The	first	one,	the	native	development,	
consists	in	writing	an	app	especially	for	a	
dedicated	platform.	The	second	one,	the	
unified	frameworks,	will	give	techniques	to	
build	an	app	on	several	platforms	with	high	
reusable	parts	or	single	development.	The	last	
part	will	focus	on	the	web	applications	adapted	
to	mobile	world	with	the	responsive	design.	

2.1 NATIVE	DEVELOPMENT	
Native	development	consists	in	producing	an	
app	dedicated	to	a	specific	platform.	The	app	
will	use	strong	platform	features	and	will	be	
optimized	for	the	targeted	platform.	

Pro	 Cons	
More	efficient	 Specific	development	

for	each	platform	(app	
porting	exists)	

Better	UI	
Integration	

More	costs	(specific	
platforms	tools)	

Complex	hardware	
usage	(sensors…)	

	

Offline	possibilities	 	
Table	1	Pro	and	cons	for	native	development	

			

	

Figure	2	Market	shares	of	the	platforms	projections,	©	
Statista	2016	

2.1.1 Native	Android	
Programming	
languages	

Java	(and	C/C++	for	specific	
parts	using	NDK)	



		

Mobile	Development	White	Paper	-	2	
	

Tools	 Eclipse,	Android	Studio,	
IntelliJ…	

Skills	
availability	

++	

Investment	 +-	(Specific	testing	devices)	
To	iOS?	 J2ObjC,	Multi-OS	engine…	

may	be	complex	
To	Windows	
Mobile?	

--	(Project	Astoria	
abandoned)	

Fragmentation	 --	(lots	of	platforms,	OS	
versions,	backward	
compatibility	issues)	

Features	 ++	
Look	and	feel	 ++	

2.1.2 Native	iOS	
Languages	 Swift,	 Objective-C,	 Object	

Pascal	
Tools	 XCode	
Skills	
availability	

+-	

Investment	 --	(Specific	development	and	
testing	devices)	

To	Android?	 --	(recoding)	
To	 Windows	
Mobile?	

+	(Project	Islandwood)	

Fragmentation	 ++	
Features?	 ++	
Look	and	feel	 ++	

2.1.3 Other	native	platforms	
Other	 native	 platforms	 present	 the	 same	
drawbacks	and	the	same	benefits,	but	with	less	
shares	(Blackberry,	Windows	Phone/Mobile).	

2.1.4 Why	target	native	platforms?	
- When	you	have	strong	knowledge	in	

Android	or	iOS,	
- When	you	only	target	a	single	platform	

and	requires	strong	features	
- When	strong	performance	or	feature	are	

required	(rendering,	sensors…)	
- When	it	is	required	from	the	customer	

(stability,	security)	
- When	offline	capabilities	are	required	

2.2 REUSABLE	SOLUTIONS	AND	UNIFIED	
FRAMEWORKS	

This	part	presents	ways	to	build	an	app	without	
duplicating	 the	 effort	 for	 each	 platform.	
Techniques	exists	to	produce	reusable	parts	or	
even	 to	 work	 once	 and	 then	 publish	 on	 each	
platform.	

	

2.2.1 Microsoft	Visual	Studio	Cross	Platform	
Open	source?	 No	
Base	language	 C++,	Java	(Android),	Swift	

or	Objective	C	(iOS),	C#	
(Windows)	

Features	 C++	library	for	the	backend	
app	and	specific	platform	
language	for	the	client		

Performance	 ++	(native)	
Look	and	feel	 ++	
Platforms	 iOS,	Android,	Windows	

Phone	
License	fee	 +-	(up	to	250$	per	month)	

Visual	Studio	contains	a	cross	platform	solution	
to	write	a	C++	core	for	the	mobile	application,	
containing	the	backend	features,	and	then	just	
a	 wrapper	 and	 a	 UI	 written	 in	 the	 platform	
specifications.	 This	 way	 guarantees	
performance	 and	 look	 and	 feel	 and	 allows	 to	
keep	the	core	code	for	all	the	platforms.	

2.2.2 Microsoft	Xamarin	(C#)	
Open	source?	 No	
Base	language	 C#	
Features	 C#	applications	compiled	

in	native	applications.		
Performance	 +	(games	development)	
Look	and	feel	 +	(Closer	to	the	OS,	

animations)	
Platforms	 iOS,	Android,	Windows	

Phone	
License	fee	 -	(up	170$	per	month)	

Xamarin	 provides	 an	 unified	 way	 to	 build	 an	
app.	The	app	is	written	in	C#	completely.	It	can	
be	done	using	Visual	Studio,	which	 includes	 it.	
The	app	need	no	change	to	be	used	on	iOS	or	
Android.	



		

Mobile	Development	White	Paper	-	3	
	

2.2.3 Qt	(C++	/	C#)	
Open	source?	 Possible	without	

commercial	use	
Base	language	 C++,	C#	
Features	 Create	Qt	app	running	on	

desktop	or	mobile	
platform	by	coding	once.	

Performance	 No	data	available	
Look	and	feel	 No	data	available	
Platforms	 iOS,	Android,	Windows	

Phone	
License	fee	 +-	(up	to	350$	per	

developer	per	month)	
Qt’s	 approach	 is	 to	 provide	 a	 single	 app	 for	
multiple	platforms.	Qt	comes	with	a	specific	IDE	
(but	can	be	used	with	Visual	Studio	as	well),	and	
relies	 on	 a	 specific	 language	 for	 the	 UI.	 The	
backend	of	the	app	can	be	written	in	C++	or	C#.	

2.2.4 Adobe	PhoneGap	(Web)	
Open	source?	 Yes	
Base	language	 Web	(HTML/CSS/JS)	
Features	 Possibility	to	access	

phone’s	features	(camera,	
contacts,	GPS…)	through	
Apache	Cordova.	

Performance	 -	
Look	and	feel	 -	(Close	to	web)	
Platforms	 iOS,	Android,	Windows	

Phone	
License	fee	 ++	(free)	

PhoneGap	 allows	 to	 write	 an	 app	 using	 web	
technologies,	 but	 allows	 to	 access	 specific	
platform	 features	 (camera,	 sensors…).	 Hence	
the	UI	will	be	less	integrated	and	less	fluid.	

2.2.5 Why	using	frameworks?	
- When	you	own	knowledge	of	the	language	

of	one	specific	framework,	
- When	your	mobile	application	need	specific	

features	 /	 look	 that	 the	web	 cannot	 offer	
but	still	has	to	be	on	several	platforms	

- When	 the	 application	 need	 performance	
but	it	is	not	the	top	priority	

- When	the	app	may	need	offline	content	

2.3 WEB	DEVELOPMENT	
Web	development	consists	in	the	development	
or	 the	 adaption	 of	 a	 web	 based	 client,	 using	

mainly	 responsive	 design	 principles	 and	
JavaScript.	A	standard	web	site	can	be	adapted	
using	 responsive	 design	 techniques	 to	 be	
mobile	 compliant.	 The	 features	 will	 stay	 the	
same	on	all	the	platforms.	

2.3.1 Responsive	Design	
Responsive	 design	 is	 a	 good	 practice	 that	
ensures	 a	 website	 to	 stay	 usable	 and	 fully	
functional	 even	 on	 a	 small	 screen	 (tablet	 or	
smartphone).	The	website	must	always	suit	the	
graphical	 chart	 of	 the	 desktop	 version.	 This	
means	 that	 only	 a	 single	 (more	 careful)	
development	 can	 produce	 an	 app	mobile	 and	
desktop	compliant.	

	

Figure	3	Responsive	Design	concept	illustrated	with	water	

	

Figure	4	Responsive	design	(Mashable)	

Programming	
languages	

JavaScript,	CSS3,	
HTML5	

Tools	 WebStorm,	IntelliJ,	
Visual	Studio,	
Eclipse…	

Workforce	 ++	
License	fee	 ++	
Compatibility	 Mobile/Desktop	

compatible	(except	
old	versions:	IE8-)	



		

Mobile	Development	White	Paper	-	4	
	

Fragmentation	 +-	(browsers)	
Features	 +-	to	–	(regarding	the	

mobile	device	used)	
Performance	 -	
Look	and	feel	 -	

	

2.3.2 Encapsulate	web	applications	into	app	
containers	

The	 web	 client	 can	 be	 encapsulated	 into	 a	
specific	mobile	container	 (an	app)	 that	can	be	
installed	 on	 the	 various	 mobile	 platforms	
through	their	store.	This	allows	to	create	an	app	
which	is	in	fact	a	shortcut	to	a	web	site.	

2.3.3 Why	using	web	mobile	development?	
- When	you	already	own	a	strong	web	

application	
- When	you	own	web	knowledge,	
- When	your	application	does	not	have	to	

face	strong	requirements	(simple	
application,	no	specific	need)	

- When	your	applications	require	constant	
connectivity	

3 CONCLUSION	
Choosing	a	mobile	development	technique	can	
be	considered	following	three	point	of	views.	

Features	and	look	and	feel	goals	are	mainly	
achieved	by	the	native	development	or	the	
cross	platforms	solutions,	while	easily	porting	
apps	and	less	investments	can	be	achieved	by	
using	unified	frameworks	or	web	responsive	
design	development.	

	

Figure	5	Decision	process	

4 REFERENCES	
1. Mobile	application	development	

Wikipedia	-	
https://en.wikipedia.org/wiki/Mobile_
application_development	(3/03/16)	

2. Android	development	VS	iOS	-	
http://techcrunch.com/2013/11/16/th
e-state-of-the-art/	(3/03/16)	

3. Porting	iOS	to	Android	-	
http://www.mobilephonedevelopment
.com/porting-ios-to-android	(3/03/16)	

4. J2objc	-	http://google-
opensource.blogspot.be/2012/09/j2ob
jc-java-to-ios-objective-c.html	
(3/03/16)	

5. Multi-OS	Engine,	Intel	Blog	-	
https://software.intel.com/en-
us/blogs/2015/07/30/power-your-
mobile-app-development-with-the-
multi-os-engine-of-intel-inde	(3/03/16)	

6. Multi-OS	Engine	-	
https://software.intel.com/en-
us/multi-os-engine	(3/03/16)	

7. Astoria	Project	-	
http://www.windowscentral.com/micr
osoft-shows-how-easy-it-will-be-port-
android-apps-windows-10-new-video	
(3/03/16)	

8. Phonegap	-	
http://blogs.interknowlogy.com/2012/
01/26/how-to-use-phonegap-to-port-
quickly-your-web-app-to-a-native-ios-
and-android-device/	(3/03/16)	

9. Qt	-	http://www.qt.io/	(10/03/16)	
10. Microsoft	Visual	Studio	Cross	Platform	

Mobile	development	-	
https://www.visualstudio.com/en-
us/features/mobile-app-development-
vs.aspx	(10/03/16)	

11. Xamarin	-	https://xamarin.com/	
(10/03/16)	

12. Responsive	Design	-	
http://alistapart.com/article/responsiv
e-web-design	(10/03/16)	

13. iOS	SDK	-	
https://developer.apple.com/ios/down
load/	(10/03/16)	



		

Mobile	Development	White	Paper	-	5	
	

14. Android	SDK	embedded	in	Android	
Studio	-	
http://developer.android.com/sdk/ind
ex.html	(10/03/16)	

15. Android	NDK	-	
http://developer.android.com/ndk/ind
ex.html	(10/03/16)	

16. Universal	Windows	Platform	(UWP)	-	
https://msdn.microsoft.com/en-
us/windows/uwp/get-
started/universal-application-platform-
guide	(10/03/16)	

5 AUTHORS	
- Maxime	DENIS	–	mdenis@nalys-group.com	
- Dimitri	DUJARDIN	–	mdujardin@nalys-

group.com	
- Mojez	PUNJWANI	-		mpunjwani@nalys-

group.com		


